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Abstract 

Relativistic P-~OCU elastic scattering observables are calculated using relativistic NN 

amplitudes obtained from the solution of a two-body relativistic equation in which one 

particle is kept on its mass-shell. Results at 200 MeV are presented for two sets of NN 

amplitudes, one with pure pseudo-vector coupling for the pion and another with a 25% 

admixture of pseudo-scalar coupling. Both give a very good fit to the positive energy 

on-shell NN data. Differences between the predictions of these two models (which are 

shown to be due only to the differences in their corresponding negative energy amplitudes) 

provide a measure of the uncertainty in constructing Dirac optical potentials from NN 

amplitudes. 

PACS numbers: 24.10.Ht, 25.40.Cm, 21.30. +y 



It is well known that the relativistic impulse approximation(R1A) gives a good descrip- 

tion of medium energy p-nucleus scattering observables'. In this approach the scattering 

of the proton is described by a Dirac equation with an optical potential U of the form 

where the p superscripts (known 8s p-spin) are positive(negative) for nucleons in a pos- 

itive(negative) energy state. This equation therefore expresses the optical potential as a 

folding of the N N  T matrix describing scattering of two initial nucleons in p-spin states 

( p , p 2 )  to two final nucleons in p-spin states ( P I , & )  by a nucleon density distribution p 

which depends on the pspin of the initial and the final bound nucleon. 

Previous has clearly established that the success of the RIA depends strongly 

on the U(+*-) and U ( - I + )  amplitudes, which in turn depend on knowledge of T matrix 

elements in which at least one particle in the initial or final state is in the negative energy 

state. (In this letter these amplitudes will be referred to collectively as "negative pspin 

amplitudes "). These amplitudes cannot be measured directly , and some ansatz has to 

be made to extend the physically accessible positive energy amplitudes to the full Dirac 

space. 

In the original calculations', the values of the negative pspin amplitudes were in- 

ferred by expanding T in terms of five Fermi covariants, and fitting these to the on-shell 

T(++p++) data. However, this procedure is ambigious and sensitive to the choice of the five 

covariants4. For example the covariants 7!$ and -(r5 q.7)1 (r5 q.7.)2/4m2 give identical 

results in the (++, ++) sector, but their extrapolations to the negative p-spin sectors are 

different, resulting in generally poor fits at low energy(200 MeV) if $7; terms are included. 

This problem led Tjon and Wallace' to adopt a theoretical model of NN interaction as a 

basis for predicting all T(P PlvP P a )  matrix elements in Eq(1). Use of a dynamical model 

which describes the N N  observables in a qualitative way over the 0 to 1000 MeV range 

was thought to be the best way to minimize the ambiguity in prediction of the optical 

potential. The optical potential based on a complete set of amplitudes (referenced to as 

IA26) produces good agreement with experimental results over a wide range of projectile 

e n e r g i d  from 200 to 800 MeV. 

I 1  
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In view of the importance of the negative pspin sectors to the success of the RIA, and 

because these amplitudes cannot be directly determined by data, it is important to see 

whether different relativistic dynamical models for T will work as well, and to investigate 

the sensitivity of RI-4 results to realistic variations of negative pspin amplitudes. We have 

studied this question in detail, and in this letter we present a brief summary of our results. 

A more complete discussion will be published elsewhere. 

To study the sensitivities of the p-nucleus scattering observables to realistic variations 

in the negative p-spin sectors we used relativistic NN amplitudes obtained from the so- 

lution of the relativistic equation in which one particle is on-shell7. To ensure that the 

resulting amplitudes satisfy the Pauli principle, the OBE kernels used in this calculation 

were explictly antisymmetrized’*’. Hence the 4 classes of amplitudes T(+-*++) ,T(-+p++), 

T(++*+-) and T(++J-+) can all be obtained through antisymmetry, or time reversal in- 

variance, from T(+-J++) which we will referred to simply as T(-v+), and the amplitudes 

T(+-I+-) ,T(+-,-+) ,T(-+v+-) and T(-+J-+) can similarly be obtained from “‘(+-I+-),  
I 1  

referred to as T(-p-). The amplitudes T(--,f’”) and T(P P z i - - - )  are all taken to be zero. 

Finally, the TN coupling used in these solutions is a mixed coupling of the form 

7.415 Ay5 + (1 - A)-. 
2 m  

The parameter X varies the mix of pseudo-scalar and pseudo-vector coupling, and is defined 

so that the on-shell amplitude is independent of A. When X is unity the coupling is purely 

pseudo-scalar and when it is zero the coupling becomes pure pseudo-vector. 

Two OBE models have been found which fit the NN data equally well, but which 

have significantly different T(+J-)  amplitudesg. In model 1, only the four mesons 7r,o,u 

and p are used. This is the minimal number needed to represent the long, medium and 

short range nuclear forces, and a very good fit to the positive energy NN amplitudes is 

obtained when the parameter X has the value 0.25 which is 25% pseudo-scalar and 75% 

pseudo-vector. In another OBE model, model 2, the ?rN coupling is constrained to be pure 

pseudo-vector(X = 0) consistent with pair suppression and chiral symmetry. In order to 

fit the NN data equally well, two extra mesons, 6 and q ,  must be included. ( The 6 meson 

is needed to get the correct splitting between ‘So and 3S1 central terms, which emerges 
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automatically when X = 0.25.) These two models allow us to explore the sensitivity to 

the amount of pseudo-scalar coupling one may use and still obtain a good fit to the NN 

observables. They both differ significantly from the model used by Tjon and Wallace. 

The results for the polarized p-*'Ca elastic scattering at  200 MeV obtained from the 

two models are shown in Fig.1. Calculations are based on the IA2 formalism of reference 

6. Although both models give a reasonable description for the p-nucleus observables, it 

can be seen that the mixed coupling model gives superior results over the pure pseudo- 

vector coupling case. However, since the integral in (1) has only been evaluated in the 

t p  approximation (in which the T-matrix is evaluated on-shell and factored out of the 

integral) and other effects such as Pauli blocking and vacuum polarization have not been 

included, it cannot be concluded that the mixed coupling case will continue to give the 

best results after these effects are taken into account. 

We would like to emphasize that the relativistic NN amplitudes used were the results 

of dynamical calculations based on a relativistic equation, and do not have any adjustable 

parameters. Calculations have also been performed at other energies and the predictions 

agree with the data as well as in the case of 200 MeV. 

In order to isolate the model dependence arising from negative-energy components of 

T ,  we compare models 1 and 2 above with a calculation of Tjon and Wallace5 in Fig.2. In 

this case we standardize the comparisons by replacing the T(++*++) amplitudes in each 

case by the on-shell amplitudes determined by Arndt et al". Note that the differences 

between models 1 and 2 are substantially unchanged, even though the depth of the oscilla- 

tion in A ,  has increased somewhat. This shows that (i) the differences between models 1 

and 2 are not due to any differences in the T(++I++) amplitudes, and that -(ii) even though 

models 1 and 2 give a very good fit to the NN data, there is still some overall sensitivity to 

using the Arndt T(++I++) amplitudes as shown by the systematic differences between the 

results of Fig.1 and Fig.2. The differences between the the two pseudo-vector cases (model 

2 and the Tjon-Wallace case) are due solely to model dependence arising from the negative 

p-spin sectors of the T-matrix in Eq(1). The Tjon-Wallace analysis uses a Blankenbecler- 

Sugar reduction of the Bethe-Salpeter equation and was solved with coupled N N  and N A  

channels12. We have checked that the differences shown in Fig.2. are not due to additional 
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(- -) channels in which both of the initial or final particles have negative p-spin, which are 

included in the Blankenbecler-Sugar equation but not present in the equation of references 

7 and 9. 

In summary, we emphasize that although the p-nucleus observables cannot be uniquely 

predicted by the on-shell NN amplitudes, the use of meson exchange dynamics subtantially 

restricts the ambiguity. Differences in the predictions of models 1 and 2, both of which fit 

the on-shell N N  data very well, are due to the differences in their corresponding ?'(+I-)  

amplitudes, which cannot be uniquely determined by the on-shell data. The model depen- 

dence is significant but still smaller than the sizes of the pair contributions themselves. 

These results are thought to provide a reasonable measure of the uncertainty in predicting 

the Dirac optical potential from NN amplitudes, which we expect to be largest at lower 

energies. 

Finally, it is amusing that the simpler model 1, with the exchange of only four mesons 

and a 25% admixture of r5 coupling for the pion, fits the observables as well as it does. 

This result suggests either that some degree of pair non-supression on the Born level may 

be allowed, or that the Q counter terms required to control the q5 part of the pion coupling 

may already be included as part of the phenomenological o exchange potential used in the 

NN models. In view of the success here, it may be worth examining the results of such 

mixed coupling models in other reactions, such as electromagnetic processes or processes 

involving pion production or absorption. 

Two of us (F.  G and S. W) gratefully acknowledge the support of the U.S Department 

of Energy. One of us (K. M. M) gratefully acknowledges the support of NASA, grant 

number NCCI-42. R. M. M and J. T would like to acknowledge the hospitality of CEBAF, 

where this work was discussed and carried out. 
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Figure Captions 

Fig.1. Predictions for p40Ca observables for the X = 0.25 model 1 (solid line) and 
X = 0 model 2 (dashed line) described in the text. The stars are data from reference 10. 

Fig.3. Results for the p40Ca  observables with theoretical T(++i++) amplitudes re- 
placed by the Arndt amplitudes, and theoretical amplitudes in other p-spin sectors left 
unchanged. Model 1 (solid line), model 2 (dashed line) and the calculation by Tjon and 
Wallace (dotted line) are shown. The data are as in Fig.1. 
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Figure 1 



Figure 2 


